V = 2274.8 (6) Å³

Mo Ka radiation

 $0.60 \times 0.33 \times 0.11 \text{ mm}$

3121 measured reflections

2200 independent reflections

2094 reflections with $I > 2\sigma(I)$

 $\mu = 4.29 \text{ mm}^{-1}$

T = 304 (2) K

 $R_{\rm int} = 0.065$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sodium *N*-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate

B. Thimme Gowda,^a* Miroslav Tokarčík,^b Jozef Kožíšek^c and Hartmut Fuess^d

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ^bDepartment of Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^cDepartment of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and ^dInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany Correspondence e-mail: gowdabt@vahoo.com

Received 28 June 2007; accepted 6 July 2007

Key indicators: single-crystal X-ray study; T = 304 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.062; *wR* factor = 0.177; data-to-parameter ratio = 14.9.

The title compound [systematic name: μ_2 -aqua-diaquabis- $(\mu_3$ -N-bromo-2,4-dichlorobenzenesulfonamidato)disodium(I)], $Na^+ \cdot C_6 H_3 Br Cl_2 NO_2 S^- \cdot 1.5 H_2 O_1$, crystallizes with two sodium cations. two N-bromo-2,4-dichlorobenzenesulfonamidate anions and three water molecules in the asymmetric unit. similar to sodium N-bromobenzenesulfonamidate, sodium Nbromo-4-chlorobenzenesulfonamidate and sodium N-bromo-2methyl-4-chlorobenzenesulfonamidate. A crystallographic twofold rotation axis passes through one of the water molecules. There is no interaction between the nitrogen atoms and sodium ions. The sodium ion shows octahedral coordination by three O atoms of water molecules and by three sulfonyl O atoms of three different N-bromo-2,4-dichlorobenzenesulfonamidate anions. The S-N distance of 1.590(6) Å is consistent with an S=N double bond. The Na⁺ ion coordination in the structure gives rise to several hydrogen bonds between water molecules and N or Br atoms.

Related literature

For related literature, see: Gowda *et al.* (2007*a*,*b*); Gowda, Savitha *et al.* (2007); Gowda & Usha (2003); Gowda, Usha *et al.* (2007); Usha & Gowda (2006).

Experimental

Crystal data

Na⁺·C₆H₃BrCl₂NO₂S⁻·1.5H₂O $M_r = 707.96$ Monoclinic, C2/c a = 11.1170 (15) Å b = 6.780 (1) Å c = 30.567 (4) Å $\beta = 99.124$ (15)°

Data collection

Oxford Diffraction Xcalibur CCD diffractometer Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2003; Clark & Reid, 1995) $T_{\rm min} = 0.195$, $T_{\rm max} = 0.627$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$
$wR(F^2) = 0.177$
S = 1.09
2200 reflections
148 parameters
5 restraints

$\begin{array}{l} \text{independent and constrained} \\ \text{refinement} \\ \Delta \rho_{\text{max}} = 1.06 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -1.00 \text{ e } \text{ Å}^{-3} \end{array}$

H atoms treated by a mixture of

Table 1

Π_{V}	ometry (A, °)	d i	vdrogen-bond	Η
-----------	---------------	-----	--------------	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D4W - H42 \cdots N1$	0.80 (5)	2.13 (5)	2.925 (8)	169 (8)
$O3W - H31 \cdots N1^{i}$	0.88(5)	2.18 (6)	3.010 (7)	158 (8)
O3W−H31···Br1 ⁱ	0.88 (5)	2.81 (6)	3.6109 (13)	152 (8)
$D4W - H41 \cdots Br1^{ii}$	0.82 (5)	2.69 (5)	3.493 (6)	165 (8)

Symmetry codes: (i) -x + 1, y - 1, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2003); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2002); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997), *PLATON* (Spek, 2003) and *WinGX* (Farrugia, 1999).

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship. MT and JK thank the Grant Agency of the Slovak Republic (grant No. 1/2449/05).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2212).

References

- Brandenburg, K. (2002). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Clark, R. C. & Reid, J. S. (1995). *Acta Cryst.* A**51**, 887–897.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, m1647–m1648.
- Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, m1957.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Gowda, B. T., Savitha, M. B., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, m1646.
- Gowda, B. T. & Usha, K. M. (2003). Z. Naturforsch. Teil A, 58, 351–356.
- Gowda, B. T., Usha, K. M., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, m1739–m1740.
- Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.

supplementary materials

Acta Cryst. (2007). E63, m2115-m2116 [doi:10.1107/S1600536807033144]

Sodium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate

B. T. Gowda, M. Tokarcík, J. Kozísek and H. Fuess

Comment

The chemistry of *N*-bromo-arylsulfonamides is of interest due to their diverse characteristics (Usha & Gowda, 2006). In the present work, the structure of sodium *N*-bromo-2,4-dichloro-benzenesulfonamidate (NaNB24DCBSA) has been determined to explore the substituent effects on the solid state structures of arylsulfonamides and N-halo arylsulfonamidates (Gowda *et al.*, 2007*a,b*; Gowda, Savitha *et al.* 2007; Gowda, Usha *et al.*, 2007). The structure of NaNB24DCBSA (Fig. 1) is similar to those of sodium *N*-chloro-2,4-dichloro-benzenesulfonamidate (NaNC24DCBSA) (Gowda, Savitha *et al.*, 2007), sodium *N*-bromo-benzenesulfonamidate (NaNBBSA) (Gowda *et al.*, 2007*d*), sodium *N*-bromo-4-chloro- benzenesulfonamidate (NaNB4CBSA) (Gowda *et al.*, 2007*a*) and sodium *N*-bromo-2-methyl-4-chloro-benzenesulfonamidate (Gowda *et al.*, 2007*b*). NaNB24DCBSA crystallizes with two sodium cations, two *N*-bromo-2,4-dichloro-benzenesulfonamidate anions and three water molecules in the asymmetric unit. One of the water molecules is located on a special position. Further, the sodium ion shows octahedral coordination by three O atoms of three different water molecules and by three sulfonyl O atoms of three different *N*-bromo-2,4-dichloro-benzenesulfonamidate anions. There is no interaction between the nitrogen and sodium ions in the molecule. The S—N distances of N1—S1, 1.590 (6)Å is consistent with a S—N double bond and in agreement with those observed with NaNBBSA, NaNB4CBSA, NaNB2M4CBSA and NaNC24DCBSA. The Na+ ion coordination in the structure gives rise to several hydrogen bonding between water hydrogen, oxygen and nitrogen or bromine atoms in the molecule (Table 1).

Experimental

The title compound was prepared according to the literature method (Gowda & Usha, 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Gowda & Usha, 2003). Single crystals of the title compound were obtained from its aqueous solution and used for X-ray diffraction studies at room temperature.

Refinement

Crystals of the tittle compound are monoclinic; space group C2/c. The crystal under study was refined as twinned. Nonmerohedral twinning was detected and analysed using TWINROTM routine of the *WinGX* package. 26 percent of total 3121 reflections were found overlapped with rotation matrix (0.853 0.000 – 0.147) (0.000 – 1.000 0.000) (–1.853 0.000 – 0.853) Using this twin matrix a HKLF5 file was generated which was subsequently used in the *SHELXL97* refinement of the structure. Fractional contributions of the twin domains were refined to 76 and 24 percent. Benzene H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å. H atoms of water molecules (O3w, O4w) were located in a difference map and refined with restraint on bond length O—H = 0.85 (5)Å and on mutual distance of H41, H42 H atoms 2.77 (8) Å. All H atoms have $U_{iso}(H) = 1.2 U_{eq}(O,C)$. **Figures**

Fig. 1. *ORTEP* view of the title compound showing the atom labelling scheme. H atoms are represented as small spheres of arbitrary radii. Water molecule Ow3 is located on a two fold axis (1/2, 1/2 + y, 1/4). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, y, 1/2 - z].

Sodium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate

Crystal data

$Na^+ C_6H_3BrCl_2NO_2S^- 1.5H_2O$	$F_{000} = 1384$
$M_r = 707.96$	$D_{\rm x} = 2.067 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 2198 reflections
a = 11.1170 (15) Å	$\theta = 2.5 - 26.4^{\circ}$
b = 6.7800 (10) Å	$\mu = 4.29 \text{ mm}^{-1}$
c = 30.567 (4) Å	T = 304 (2) K
$\beta = 99.124 \ (15)^{\circ}$	Plate, yellow
V = 2274.8 (6) Å ³	$0.60 \times 0.33 \times 0.11 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Xcalibur CCD diffractometer	2094 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.065$
T = 304(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
Rotation method data acquisition using ω and phi scans	$\theta_{\min} = 5.2^{\circ}$
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003; Clark & Reid, 1995)	$h = -13 \rightarrow 13$
$T_{\min} = 0.195, T_{\max} = 0.627$	$k = -8 \rightarrow 8$
3121 measured reflections	$l = -36 \rightarrow 37$
2200 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.062$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.177$	$w = 1/[\sigma^2(F_o^2) + (0.0925P)^2 + 47.8P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} = 0.002$

2200 reflections 148 parameters

 $\Delta \rho_{\text{max}} = 1.06 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.00 \ e \ {\rm \AA}^{-3}$

5 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$	
C1	0.3275 (6)	0.1809 (9)	0.1192 (2)	0.0183 (12)	
C2	0.4084 (7)	0.1212 (10)	0.0912 (2)	0.0219 (13)	
C3	0.3665 (8)	0.0504 (11)	0.0492 (2)	0.0319 (17)	
Н3	0.4213	0.0098	0.031	0.038*	
C4	0.2426 (8)	0.0402 (11)	0.0345 (3)	0.0354 (18)	
C5	0.1588 (7)	0.0946 (12)	0.0613 (3)	0.0354 (18)	
Н5	0.0755	0.0843	0.0514	0.042*	
C6	0.2028 (6)	0.1643 (11)	0.1032 (3)	0.0279 (16)	
H6	0.1475	0.2018	0.1215	0.033*	
N1	0.4651 (5)	0.4579 (8)	0.17108 (18)	0.0203 (11)	
01	0.4400 (5)	0.1331 (7)	0.20070 (16)	0.0254 (10)	
O2	0.2573 (5)	0.3374 (8)	0.18720 (17)	0.0292 (12)	
O3W	0.5	-0.2706 (11)	0.25	0.0289 (15)	
H31	0.529 (8)	-0.332 (12)	0.275 (2)	0.035*	
O4W	0.7099 (5)	0.3237 (9)	0.20865 (19)	0.0318 (12)	
H41	0.745 (8)	0.302 (11)	0.187 (2)	0.038*	
H42	0.647 (5)	0.369 (10)	0.196 (3)	0.038*	
S1	0.37118 (14)	0.2828 (2)	0.17335 (5)	0.0174 (4)	
Na1	0.6445 (3)	-0.0014 (4)	0.23596 (10)	0.0287 (6)	
Cl1	0.56406 (16)	0.1333 (3)	0.10764 (7)	0.0358 (5)	
Cl2	0.1903 (3)	-0.0354 (3)	-0.01953 (7)	0.0553 (7)	
		0(59(2(11)))	0 12222 (2)	0.0301(3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.019 (3)	0.018 (3)	0.018 (3)	-0.003 (2)	0.001 (2)	0.000 (2)

supplementary materials

0.033 (4)	0.019 (3)	0.014 (3)	0.003 (3)	0.006 (3)	0.000 (2)
0.055 (5)	0.018 (3)	0.024 (4)	0.006 (3)	0.010 (3)	-0.008 (3)
0.051 (5)	0.016 (3)	0.033 (4)	-0.004 (3)	-0.010 (4)	-0.003 (3)
0.029 (4)	0.033 (4)	0.038 (4)	-0.005 (3)	-0.012 (3)	-0.003 (3)
0.020 (3)	0.031 (4)	0.032 (4)	-0.004 (3)	-0.001 (3)	0.001 (3)
0.019 (3)	0.019 (3)	0.022 (3)	0.000 (2)	0.003 (2)	0.003 (2)
0.029 (2)	0.024 (2)	0.023 (2)	0.002 (2)	0.001 (2)	0.0059 (19)
0.023 (2)	0.041 (3)	0.027 (3)	0.007 (2)	0.014 (2)	-0.005 (2)
0.041 (4)	0.025 (4)	0.018 (3)	0	-0.003 (3)	0
0.022 (3)	0.038 (3)	0.036 (3)	0.002 (2)	0.005 (2)	0.000 (2)
0.0200 (7)	0.0177 (7)	0.0153 (7)	0.0002 (6)	0.0051 (6)	0.0010 (6)
0.0290 (14)	0.0299 (15)	0.0292 (15)	0.0037 (12)	0.0107 (12)	-0.0006 (12)
0.0228 (8)	0.0442 (11)	0.0429 (11)	0.0029 (7)	0.0124 (7)	-0.0097 (9)
0.0911 (19)	0.0350 (11)	0.0295 (10)	0.0023 (12)	-0.0216 (11)	-0.0077 (8)
0.0347 (5)	0.0246 (4)	0.0323 (4)	0.0024 (3)	0.0090 (3)	0.0059 (3)
	$\begin{array}{c} 0.033 \ (4) \\ 0.055 \ (5) \\ 0.051 \ (5) \\ 0.029 \ (4) \\ 0.020 \ (3) \\ 0.019 \ (3) \\ 0.029 \ (2) \\ 0.023 \ (2) \\ 0.021 \ (4) \\ 0.022 \ (3) \\ 0.0200 \ (7) \\ 0.0290 \ (14) \\ 0.0228 \ (8) \\ 0.0911 \ (19) \\ 0.0347 \ (5) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

C1—C2	1.397 (9)	O1—Na1	2.526 (6)
C1—C6	1.399 (9)	O2—S1	1.445 (5)
C1—S1	1.788 (7)	O2—Na1 ⁱⁱ	2.363 (5)
C2—C3	1.380 (10)	O3W—Na1	2.513 (6)
C2—Cl1	1.726 (7)	O3W—Na1 ⁱ	2.513 (6)
C3—C4	1.381 (12)	O3W—H31	0.88 (5)
С3—Н3	0.93	O4W—Na1 ⁱⁱⁱ	2.454 (6)
C4—C5	1.386 (13)	O4W—Na1	2.505 (7)
C4—Cl2	1.739 (8)	O4W—H41	0.82 (5)
C5—C6	1.378 (11)	O4W—H42	0.80 (5)
С5—Н5	0.93	Na1—O2 ^{iv}	2.363 (5)
С6—Н6	0.93	Na1—O4W ^v	2.454 (6)
N1—S1	1.590 (6)	Na1—O1 ⁱ	2.458 (6)
N1—Br1	1.881 (5)	Na1—Na1 ⁱ	3.455 (5)
01—S1	1.453 (5)	Na1—Na1 ⁱⁱⁱ	4.134 (3)
O1—Na1 ⁱ	2.458 (6)	Na1—Na1 ^v	4.134 (3)
C2—C1—C6	117.4 (6)	N1—S1—C1	109.4 (3)
C2-C1-S1	124.9 (5)	O2 ^{iv} —Na1—O4W ^v	81.6 (2)
C6—C1—S1	117.7 (5)	O2 ^{iv} —Na1—O1 ⁱ	167.5 (2)
C3—C2—C1	121.1 (7)	O4W ^v —Na1—O1 ⁱ	85.9 (2)
C3—C2—Cl1	117.6 (6)	O2 ^{iv} —Na1—O4W	89.2 (2)
C1—C2—Cl1	121.4 (5)	O4W ^v —Na1—O4W	117.42 (17)
C2—C3—C4	119.5 (7)	O1 ⁱ —Na1—O4W	95.9 (2)
С2—С3—Н3	120.2	O2 ^{iv} —Na1—O3W	100.9 (2)
С4—С3—Н3	120.2	O4W ^v —Na1—O3W	84.32 (17)
C3—C4—C5	121.5 (7)	O1 ⁱ —Na1—O3W	78.48 (17)
C3—C4—Cl2	119.4 (7)	O4W—Na1—O3W	157.4 (2)

C5—C4—Cl2	119.1 (6)	O2 ^{iv} —Na1—O1	115.4 (2)
C6—C5—C4	117.9 (7)	O4W ^v —Na1—O1	156.8 (2)
С6—С5—Н5	121.1	O1 ⁱ —Na1—O1	76.8 (2)
C4—C5—H5	121.1	O4W—Na1—O1	80.15 (19)
C5—C6—C1	122.6 (7)	O3W—Na1—O1	77.22 (17)
С5—С6—Н6	118.7	O2 ^{iv} —Na1—Na1 ⁱ	139.86 (18)
C1—C6—H6	118.7	O4W ^v —Na1—Na1 ⁱ	111.49 (17)
S1—N1—Br1	110.4 (3)	O1 ⁱ —Na1—Na1 ⁱ	46.95 (13)
S1—O1—Na1 ⁱ	118.7 (3)	O4W—Na1—Na1 ⁱ	114.39 (14)
S1—O1—Na1	148.6 (3)	O3W—Na1—Na1 ⁱ	46.58 (13)
Na1 ⁱ —O1—Na1	87.74 (18)	O1—Na1—Na1 ⁱ	45.31 (13)
S1—O2—Na1 ⁱⁱ	151.7 (3)	O2 ^{iv} —Na1—Na1 ⁱⁱⁱ	99.78 (18)
Na1—O3W—Na1 ⁱ	86.8 (3)	O4W ^v —Na1—Na1 ⁱⁱⁱ	87.84 (18)
Na1—O3W—H31	109 (6)	O1 ⁱ —Na1—Na1 ⁱⁱⁱ	78.90 (14)
Na1 ⁱ —O3W—H31	111 (6)	O4W—Na1—Na1 ⁱⁱⁱ	33.14 (13)
Na1 ⁱⁱⁱ —O4W—Na1	112.9 (2)	O3W—Na1—Na1 ⁱⁱⁱ	156.51 (15)
Na1 ⁱⁱⁱ —O4W—H41	106 (6)	O1—Na1—Na1 ⁱⁱⁱ	103.59 (13)
Na1—O4W—H41	108 (5)	Na1 ⁱ —Na1—Na1 ⁱⁱⁱ	117.89 (8)
Na1 ⁱⁱⁱ —O4W—H42	125 (6)	O2 ^{iv} —Na1—Na1 ^v	53.92 (15)
Na1—O4W—H42	103 (5)	O4W ^v —Na1—Na1 ^v	33.93 (15)
H41—O4W—H42	100 (10)	O1 ⁱ —Na1—Na1 ^v	114.58 (17)
O2—S1—O1	114.6 (3)	O4W—Na1—Na1 ^v	127.28 (18)
O2—S1—N1	115.7 (3)	O3W—Na1—Na1 ^v	74.09 (12)
01—S1—N1	104.9 (3)	O1—Na1—Na1 ^v	145.79 (16)
O2—S1—C1	104.4 (3)	Na1 ⁱ —Na1—Na1 ^v	117.89 (8)
O1—S1—C1	107.7 (3)	Na1 ⁱⁱⁱ —Na1—Na1 ^v	110.17 (13)
C6—C1—C2—C3	0.5 (10)	C6—C1—S1—N1	-127.7 (5)
S1—C1—C2—C3	-177.7 (5)	Na1 ⁱⁱⁱ —O4W—Na1—O2 ^{iv}	-109.4 (3)
C6—C1—C2—Cl1	-179.5 (5)	Na1 ⁱⁱⁱ —O4W—Na1—O4W ^v	-29.3 (3)
S1—C1—C2—Cl1	2.3 (9)	Na1 ⁱⁱⁱ —O4W—Na1—O1 ⁱ	59.1 (2)
C1—C2—C3—C4	0.7 (11)	Na1 ⁱⁱⁱ —O4W—Na1—O3W	133.3 (4)
Cl1—C2—C3—C4	-179.3 (6)	Na1 ⁱⁱⁱ —O4W—Na1—O1	134.6 (3)
C2—C3—C4—C5	-1.8 (12)	Na1 ⁱⁱⁱ —O4W—Na1—Na1 ⁱ	104.2 (2)
C2—C3—C4—Cl2	176.3 (5)	Na1 ⁱⁱⁱ —O4W—Na1—Na1 ^v	-68.1 (3)
C3—C4—C5—C6	1.6 (12)	Na1 ⁱ —O3W—Na1—O2 ^{iv}	-152.8 (2)
Cl2—C4—C5—C6	-176.5 (6)	Na1 ⁱ —O3W—Na1—O4W ^v	126.95 (18)
C4—C5—C6—C1	-0.3 (12)	Na1 ⁱ —O3W—Na1—O1 ⁱ	39.98 (13)
C2—C1—C6—C5	-0.7 (11)	Na1 ⁱ —O3W—Na1—O4W	-37.6 (5)
S1—C1—C6—C5	177.6 (6)	Na1 ⁱ —O3W—Na1—O1	-38.90 (13)
Na1 ⁱⁱ —O2—S1—O1	73.5 (8)	Na1 ⁱ —O3W—Na1—Na1 ⁱⁱⁱ	55.8 (3)
Na1 ⁱⁱ —O2—S1—N1	-48.8 (8)	Na1 ⁱ —O3W—Na1—Na1 ^v	159.94 (14)

supplementary materials

Na1 ⁱⁱ —O2—S1—C1	-169.0 (7)	S1—O1—Na1—O2 ^{iv}	-74.9 (6)
Na1 ⁱ —O1—S1—O2	0.2 (4)	Na1 ⁱ —O1—Na1—O2 ^{iv}	136.06 (18)
Na1—O1—S1—O2	-143.9 (6)	S1—O1—Na1—O4W ^v	150.9 (6)
Na1 ⁱ —O1—S1—N1	128.2 (3)	Na1 ⁱ —O1—Na1—O4W ^v	1.8 (6)
Na1—O1—S1—N1	-16.0 (7)	S1—O1—Na1—O1 ⁱ	108.0 (5)
Na1 ⁱ —O1—S1—C1	-115.4 (3)	Na1 ⁱ —O1—Na1—O1 ⁱ	-41.1 (2)
Na1—O1—S1—C1	100.5 (6)	S1—O1—Na1—O4W	9.5 (6)
Br1—N1—S1—O2	-56.7 (4)	Na1 ⁱ —O1—Na1—O4W	-139.6 (2)
Br1—N1—S1—O1	176.0 (3)	S1—O1—Na1—O3W	-171.0 (6)
Br1—N1—S1—C1	60.8 (4)	Na1 ⁱ —O1—Na1—O3W	39.91 (15)
C2—C1—S1—O2	174.8 (6)	S1—O1—Na1—Na1 ⁱ	149.1 (7)
C6—C1—S1—O2	-3.4 (6)	S1—O1—Na1—Na1 ⁱⁱⁱ	33.1 (6)
C2-C1-S1-O1	-63.0 (6)	Na1 ⁱ —O1—Na1—Na1 ⁱⁱⁱ	-115.97 (17)
C6—C1—S1—O1	118.8 (6)	S1—O1—Na1—Na1 ^v	-137.5 (5)
C2-C1-S1-N1	50.5 (7)	Na1 ⁱ —O1—Na1—Na1 ^v	73.5 (3)
Symmetry codes: (i) $-x+1$, y, $-z+1/2$; (i	i) x-1/2, y+1/2, z; (iii) -x+3	3/2, y+1/2, -z+1/2; (iv) $x+1/2, y-1/2, z;$ (v	(x) - x + 3/2, y - 1/2, -z + 1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O4W—H42…N1	0.80 (5)	2.13 (5)	2.925 (8)	169 (8)
O3W—H31…N1 ^{vi}	0.88 (5)	2.18 (6)	3.010 (7)	158 (8)
O3W—H31···Br1 ^{vi}	0.88 (5)	2.81 (6)	3.6109 (13)	152 (8)
O4W—H41…Br1 ^{iv}	0.82 (5)	2.69 (5)	3.493 (6)	165 (8)
	1/2			

Symmetry codes: (vi) -*x*+1, *y*-1, -*z*+1/2; (iv) *x*+1/2, *y*-1/2, *z*.

Fig. 1